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In a two-dimensional incompressible fluid, the barotropic instability of isolated cir- 
cular vortices can lead to multipole formation. The multipoles we study here are 
composed of a core vortex surrounded by two or more identical satellite vortices, of 
opposite-sign vorticity to the core, and the total circulation is zero. First, we present 
the generation of multipoles from unstable piecewise-constant monopoles perturbed 
on a monochromatic azimuthal mode. The stationary multipoles formed by this 
nonlinear evolution retain the same energy, circulation and angular momentum as 
the original monopoles, but possess a lower enstrophy. These multipolar steady states 
are then compared to multipolar equilibria of the Euler equation, obtained either 
analytically by a perturbation expansion or numerically via a relaxation algorithm. 
Finally the stability of these equilibria is studied. Quadrupoles (one core vortex 
bound to three satellites) prove relatively robust, whether initially perturbed or not, 
and resist severe permanent deformations (mode-2 shears or strains of amplitude up 
to 0. llmax). Amplification of the mode-3 deformation proves more destructive. More 
complex multipoles degenerate in less than a turnover period into end-products of a 
lesser complexity, via vortex splitting, pairing or merging. We use the conservation 
of integral properties to classify the large variety of instability mechanisms along 
physical guidelines. To conclude, we synthetize the connections between these various 
vortex forms. 

1. Introduction 
Coherent vortices are long-lived, horizontally recirculating fluid motions of compact 

size, which play an essential role in transient flows, such as unstable ocean currents 
or two-dimensional turbulence (McWilliams 1984, 1990). These vortices are usually 
circular, isolated, their dynamics is dominated by the Coriolis force, their Rossby 
number Ro = U / f L  is small and their velocity field is horizontal and non-divergent 
at zeroth order in Ro. In the ocean, such 'mesoscale' structures are noticeable 
both in size and life-span (5&200 km and a few weeks to a few months); they 
carry large momentum and specific water masses far away from their region of 
production, consequently contributing to the energy, heat and tracer budgets. In two- 
dimensional free-decay turbulence, vortex interactions (merger and pairing) eventually 
yield isolated circular structures, but also dipolar or tripolar aggregates (Legras, 
Santangelo & Benzi 1988). 

The literature on isolated vortex stability now covers monopoles, dipoles, tripoles, 
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annuli and vortices on a ring (Gent & McWilliams 1986; Flierl 1988; Carton & 
McWilliams 1989; Carton, Flierl & Polvani 1989; Bell 1990; Orlandi & van Heijst 
1992; Carton & Legras 1994; Pierrehumbert 1980; McWilliams & Zabusky 1982; 
McWilliams 1983; Polvani & Carton 1990; Kozlov & Makarov 1985; Dritschel 1985, 
1986). A natural formation of dipoles and tripoles from unstable monopoles has been 
confirmed by laboratory experiments (van Heijst & Flor 1989; van Heijst, Kloosterziel 
& Williams 1989). It has also been shown that more complex vortex structures than 
tripoles can be formed from strongly perturbed two-dimensional vortices (Carton 
1992). Still, the effects of barotropic instability leading to complex vortex aggregates 
need to be more fully assessed (Hopfinger & van Heijst 1993). 

At present, the stability of all regular vorticity distributions with an axial symmetry 
cannot be determined by means of a general criterion based on a simple physical 
principle. Variational techniques have provided only two exact analytical vortex 
solutions of the nonlinear Euler equation : the minimum-enstrophy vortex (Leith 
1981) and the variational modons (Stern 1974). In the extreme idealization of 
point-multipoles, quantitative stability estimates have been obtained which give an 
upper limit on the number of vortices which can be stably and symmetrically bound 
(Morikawa & Swenson 1971). Unfortunately, finite-area effects render realistic vortex 
dynamics somewhat different from the singular point-vortex cases, e.g. by coherent 
dipole formation, by filamentation or merger (Melander, Zabusky & McWilliams 
1988). To efficiently idealize finite-area vortices, we use here the well-known Finite- 
Area Vorticity Region (FAVR) framework; it represents vortices as piecewise-constant 
in the midst of an irrotational medium (Deem & Zabusky 1978). This approximation 
allows a detailed investigation of a dimensionally reduced parameter space, while a 
good dynamical agreement still exists between continuous vortices and their FAVR 
counterparts (Legras & Dritschel 1993). 

This paper aims at describing the generation, stationary forms and stability of 
two-dimensional multipolar FAVRs. We first present an efficient mechanism to 
generate them from barotropically unstable FAVR monopoles. The linear stability 
of these monopoles is studied analytically and their nonlinear evolution is modelled 
with a contour surgery and a pseudospectral code (53). The end-products of this 
instability are compared to multipolar steady states of the Euler equation, obtained 
with analytical perturbation expansions or with a numerical algorithm (9 4). The 
stability of these multipolar equilibria is then examined to determine which are 
naturally stable, or robust when slightly perturbed or permanently deformed (8 5 ) .  In 
$6,  we show how the conservation of integral properties can help predict the vortex 
transformations. Finally we summarize the properties and relations of these different 
vortex types. 

2. The barotropic vorticity equation 
A reasonable assumption for vortex studies (on Earth or in a spinning water tank) 

is the dominance of the entrainment rotation over inertial mechanisms which renders 
flows quasi-two-dimensional. Non-divergence of the horizontal velocity field (which 
thus derives from a streamfunction yi) is inserted into Ertel's theorem to yield the 
barotropic vorticity equation 

(2.1) at i  + J ( y ,  i) = v V6V, 

where 5 = V2y is the vorticity, and yi the streamfunction. The right-hand term of (2.1) 
is a numerical artifact known as biharmonic viscosity and is used here only in Eulerian 
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gridded models. In most cases, the dynamics are purely inviscid (v = 0). Then if the 
spatial domain is bounded by a streamline, (2.1) has the following invariants: excess 
energy (the area integral -; j’ [YdA, here the kinetic energy), angular momentum 
(j’ rvedA, where v g  is the azimuthal velocity), circulation, enstrophy and more generally 
any moment of the vorticity (j’ [“dA, see also Dritschel 1985). 

Hereafter, we use two numerical discretizations of the nonlinear form of (2.1): a 
Lagrangian and an Eulerian model. The Lagrangian model assumes that [ is strictly 
piecewise-constant (FAVR hypothesis) and that the domain extends to infinity in both 
directions; then as a function of [ reduces to a sum of contour integrals on vortex 
boundaries (Deem & Zabusky 1978; Dritschel 1985): 

The nodes which produce these boundaries are advected by the total velocity field. 
This technique is known as contour dynamics and represents the Euler equation (v = 0 
in (2.1)). The density of nodes is a function of the local curvature of the boundary. 
In the case of intense contour deformations, this number, hence the computational 
burden, would drastically increase. Therefore, in the presence of long thin filaments 
or of narrow bridges between vortices, the vorticity patches are disconnected ; this 
occurs when the distance between close nodes drops below a threshold given by a 
parameter p. A similar procedure reconnects vortices closer than this critical distance. 
A parameter 1 = p 2 L / 8 ,  where L is a prescribed large scale (here unity), controls the 
number of nodes on each contour; this scheme, known as contour surgery, introduces 
a very limited form of dissipation (Dritschel 1988). In this code, the vorticity is 
normalized by a factor 2z, so that a physical timescale based on an eddy turnover 
period is unity. 

The second representation of (2.1) we use is the by-now classic pseudospectral 
gridded model (see for instance McWilliams 1984, for a description). The domain is 
periodic in x and y. The resolution is 256 gridpoints in each direction and the box 
length is 2rc. Maximum vorticity is normalized to unity so that an eddy timescale is 
2z. The time-step is 0.025 for 256 horizontal nodes (to satisfy the Courant-Friedrich- 
Lewy stability condition). Hyperviscosity, the right-hand side of (2.1), is used to 
prevent enstrophy accumulation at small scales though v is kept minimum, v = lo-’. 
Spurious vortex interactions by periodicity are avoided by a small ratio of vortex size 
to domain length and by a zero total vortex circulation. Vorticity jumps at vortex 
boundaries, which should generate Gibb’s instability, are smoothed by an iterative 
procedure (Polvani & Carton 1990) or initially defined as exponentially decreasing. 

3. Generation of multipoles from unstable circular vortices 
A necessary condition for barotropic instability of two-dimensional vortices is the 

existence of a point of inflexion in their radial vorticity profile (Rayleigh‘s theorem, 
1880). In the case of a FAVR monopole (a piecewise-constant vorticity profile), this 
condition can be replaced by the existence of two vorticity regions of opposite sign 
(a.k.a. vorticity shielding). These two regions can be adjacent (see figure la),  a 
configuration we refer to as a two-contour (Rankine) vortex, or they can be separated 
by a region of null vorticity, a state which we call three-contour (Rankine) vortex 
(figure lb). 

Two-contour Rankine vortices have been investigated at length recently and exhibit 
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FIGURE 1. Generic design of (a) a two-contour and ( b )  a three-contour Rankine vortex, 
( c )  a multipole and ( d )  the corotating streamfunction yc of a multipole, for this study. 
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a natural tendency to break into dipoles when barotropically unstable (see figure 14 of 
Flier1 1988). Only a few two-contour shielded vortices create a long-lasting quadrupole 
or a pentapole; this requires that they be strongly perturbed initially (see figure 4 of 
Carton 1992). From the generic form of a two-contour vortex (figure la) and that of 
a multipole (figure l c ) ,  we can understand that a major geometrical rearrangement 
of the vorticity has to take place to transform the former into the latter. Indeed, zero- 
vorticity fluid initially exterior to the circular vortex has to intrude between the two 
vorticity regions during this transformation. Moreover, while the outer boundary of 
the circular vortex has to reconnect into separate satellite boundaries in the multipole, 
the original inner boundary should remain only slightly deformed in the end. This 
can be achieved solely if the outer boundary is originally very perturbed. 

On the other hand, in the case of a three-contour Rankine vortex, a region of 
zero-vorticity fluid already exists in the circular vortex between the two finite-vorticity 
regions. In this case, the outer annulus (of unit vorticity) can reorganize into separate 
satellites independently of the core transformation. Complex multipoles should thus 
be formed much more easily. Hereafter, we therefore use such three-contour vortices 
to generate multipoles. 

3.1. Linear instability of three-contour Rankine vortices 
For consistency with the previous study on tripoles (Polvani & Carton 1990), we 
choose the following geometrical and physical parameters for the three-contour 
Rankine vortex (see figure l b ) :  

a central (core) vortex of radius B and vorticity y < 0; 
an inert (buffer) zone between r = B and r = Al of zero vorticity; 
an annulus between r = A1 and Y = Az of positive unit vorticity. 

This choice of mean flow is supported by observations both of atmospheric (Lin 1992) 
and of oceanic (Dombrowsky, personal communication) vortices. Another example 
of a three-contour Rankine vortex - shielded annuli with vorticities 0, q, co2, 0 from 
the centre to the periphery - has been studied by Kozlov & Makarov (1985); they 
showed that the various annuli would split regularly on azimuthal modes 2, 3, and 
4 and irregularly for smaller wavelength disturbances. Here, the parameter space 
is three-dimensional (all lengthscales can be renormalized by A2) and we present 
mathematical results for general values of A l ,  A2, B and y (general cases). Still, only 
those vortices with zero total circulation have finite energy; we call these the special 
cases that are studied numerically here. General cases have been studied at length and 
do not exhibit significant differences with these special cases (e.g. Morel & Carton 
1991). The zero-circulation condition is written 

(3.1) 

The velocity field of the three-contour Rankine vortex, hereafter named mean flow, 
is in the general case 

rt = y B2 + A ;  -A:  = 0. 

U ( r )  = yr/2, r d B  (region 1); 
U(r )  = y ~ ~ / ( 2 r ) ,  B < Y < Al  (region 2); 

U ( r )  = y ~ ~ / ( 2 r )  + r / 2  - 4/ (2r ) ,  < r < A Z  (region 3 ) ;  
= Tt/@-), A2 d r, (external flow). 

To analyse the linear stability of this vortex, we linearize (2.1) with v = 0 to obtain 
the Rayleigh equation and we assume that the perturbation is a normal mode of the 
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form 

Eventually we have to solve a 3 x 3 determinant to obtain a third degree equation 
for cr = 2Lc (see Dritschel 1989): 

X G. Morel and X .  J .  Carton 

(3.2) lC(0-c t )  v'(r, 8, t )  = M.1 e 

c3 + a 2 y  (1 - k - c p 2 / x 2  - k T t / y )  + oy [(G - 1)(1 + L y P 2 / x 2 )  

+ ( I  - G - G p2/a2 - l / y ) ( l -  a2' - L rt) - b2' + ( ~ / c I ) ~ ~  - x2'([ - 1 + 8 p2/a2)1 

+ ~ ( 1 - M 2 e - G r , ) [ ( p / M ) 2 ' + ( k - 1 ) ( 1 + k y p 2 / a 2 ) l + c D  y B / a  
- L (1 - 8) a2yp2/a2 = 0, 

2 P 2 2  2 

where a = Al/A2 and p = B/A2 in the general case. This equation is solved by 
means of the Cardan formula, and the imaginary part of cr (the growth rate of the 
perturbation) is extracted. 

The results are shown on figure 2 (plate I),  for Tt = 0 ( y  = (cx2 - 1)/p2).  On 
figure 2(a), we delimit the regions in the (a > p)  semi-plane where wavenumber L 
(of between 2 and 8) is the most unstable. On figure 2(b), we plot the corresponding 
growth rate versus CI and p. On figure 2(a) we observe that the larger the wavenumber, 
the narrower the region where it dominates. This region can be clearly identified for 
wavenumbers G = 2 to G = 5 and with more difficulty for k = 6 and beyond. For each 
of the L = 2 to L = 5 wavenumbers, the peak in growth rate is well marked and well 
separated from the maxima for any other G. This is obvious for L = 2 and L = 3 on 
figure 2(b),  but it can be shown for all wavenumbers up to k = 5 by superimposing 
charts of modal growth rates. Therefore, for a given value of ( x , p )  and for L' d 5, 
only one mode of perturbation will distinctly grow on a given three-contour Rankine 
vortex and a specific multipole should be formed. 

3.2. Nonlirtear evolution of a perturbed vortex in a contour surgery 

We now present the formation of multipoles from perturbed three-contour Rankine 
vortices. We initialize the contour surgery code described in $ 2  with the mean 
flow stated in $3.1. On this circular vortex we create a modal deviation with 0.001 
amplitude on each contour. We run three cases for each of which a single wavenumber 
L dominates: (Rl)  a = 0.63,p = 0.35,L = 2;  (R2) tl = O.Sl,j? = 0.4,G = 3; (R3) 
M = 0.85,p = 0.4,G = 4. For each case, the total circulation is initially null, so 
that y = (a2 - l)/p2. The time step is 0.02 for numerical stability; the surgery 
threshold parameter p = 0.15 corresponds to a discretization into 160 nodes initially 
and roughly 1000 nodes at late stages (when the multipole is formed with peripheral 
filaments). The vorticity maps in the (x, y)-plane are presented on figure 3. 

Owing to the small amplitude of the initial perturbation (one thousandth), we can 
accurately observe the linear stage of the instability (second frame of each line of 
figure 3). During this period, the disturbance grows on each contour with a phase shift 
characteristic of barotropic instability. A modal analysis (not shown here) reveals 
that the maximum modal amplitude is slightly larger for case (Rl) than for case (R3): 
mode k = 2 has a more marked linear instability than G = 4, and even more so for 
higher wavenumbers than G = 4. Thus high-wavenumber perturbations develop less 
rapidly, their harmonics can amplify nonlinearly and the more complex multipoles 
are more rarely produced. Here, after 7 or 8 dimensionless time units, the nonlinear 
effects have taken place and the multipoles are clearly formed: the periphery has 
condensed into G poles. From the original outer annulus, the most sheared parts 
now form filamentary debris, which later interact with the satellites and are slowly 

and a pseudospectral code 



Journal of Fluid Mechanics, Vol267 

(a )  1.0 

0 .8  

0.6 

0.4 

0.2 

0 

( b )  1 .o 

0.8 

0.6 

0.4 

0.2 

above 8.5 
8 . 1 - 8 5  
7.6-8 1 
7.2-7.6 
6.7-7.2 
6.3 - 6.7 
5 . 8 - 6 3  
5 . 4 - 5 8  
4 . 9 - 5 4  
4 5 - 4 9  
4.1 - 4.5 
3.6-4 1 
3 2 - 3 . 6  
2 7 - 3 . 2  
2 2 - 2 . 7  
1 8 - 2 . 2  
1.3-1.8 
0.9-1.3 
0 . 4 - 0 9  

0 - 0 4  
below 0 

0.2 0.4 0.6 0.8 1 .0 
Instability contours 

above 285 
270 - 285 
255 - 270 
240-255 
225 - 240 
210 - 225 
195 - 210 
180- 195 
165 - 180 
150 - 165 
135 - 1% 
la- 135 
105 - 120 
90- 105 
75- 90 
M- 75 
45- 60 
m- 45 
15- 30 
0- I5 

below 0 

0 0 . 2  0.4 0.6 0 .8  1 .0 

Plate 1 

Instability contours 

FIGURE 2. Linear stability diagrams of the three-contour Rankine vortex with I-, = 0 in the (a, P )  semi-plane: 
(a) chart of most unstable wavenumber, for modes m = 2 torn = 8; ( b )  maximum growth rate (multiplied by 1OOO) 
for modes m = 2 to rn = 8. 
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FIGURE 3. Nonlinear evolution of a slightly perturbed three-contour Rankine vortex in a contour 
surgery code: (a) circular vortex with CI = 0.63, /I = 0.35, Tt = 0, b = 3 at times t = 0,5,8,9,10z; ( b )  
same as (a) but for CI = 0.81, /I = 0.40, T t  = 0, b = 3 at times t = 0,4,5,6,8~; ( c )  same as (a) but for 
ct=0.85,j=0.40,Tt=O,b=4at t imest=0,6,8,9,l lz.  

dissipated as they shrink under the surgery scale. But this threshold is small and the 
dissipative timescale long compared to the eddy turnover period. We do not show 
the whole development of this ‘viscous’ adjustment process for this run because the 
numerical cost and CPU time of computations grow as N:ode,, with Nnodes - 1000 for 
p = 0.15. 

To fully observe the nonlinear stage, we have run case (R2) with p = 0.20 and 
p = 0.25 (an increasing dissipation) and a larger initial perturbation amplitude  YO). 
These two simulations present no qualitative difference and only the first is shown on 
figure 4(a). Two periods appear in the nonlinear stage: first, during the adjustment 
( t  < 152, where 7 is the core turnover period, z = 47c/y), filaments formed by the 
initial annulus induce strong displacements and deformations on the satellites. Then, 
after t - 15z, most small-scale debris has been dissipated; the multipole thus formed 
is still robust at t - 602. To complement this observation, we plot on figure 4(b) 
the amplitudes of the azimuthal modes of perturbation versus time, for the run of 
figure 4(a). The fundamental mode t = 3 grows exponentially, for a period of roughly 
32, before the first harmonic (wavenumber 2 4  appears. This delay clearly suggests 
an origin of mode 2L in wave-wave interaction and confirms the dominant growth of 
the fundamental mode (wavenumber t). In both cases ( p  = 0.20 and p = 0.25), the 
adjustment process roughly takes 152, the final amplitude of mode t = 3 is lo%, but 
the damping effects are obviously larger in the second case ( p  = 0.25). We check that 
both the energy and angular momentum are reasonably well conserved (less than 1% 
variation), while the enstrophy undergoes a 9% decrease. 

2 FLM 267 
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I , 

FIGURE 4. Rerun of simulation shown on figure 3(b) with a lesser surgery efficiency (p  = 0.20 instead 
of p = 0.15). (u )  Time evolution of the vortieity maps, times shown are t = 0,4,6,10,38,40,42,44~. 
(bf Time series of azimuthal mode variations for the evolutions shown on (u ) ;  solid (dashed) line is 
the amplitude of mode t = 3 (26 = 6) .  

One could question the necessity of infinite gradients in the original vortex to form 
multipoles. To support the generality of this formation process, we now produce a 
pseudospectral simulation of case (R2). The initial vortex is similar to that used in 
contour surgery, scaled by a factor 271 in amplitude, and where the vorticity gradients 
have been replaced by an exp(-r6) variation on a few gridpoints around r = 8, r = a 
and r = 1. The horizontal resolution is 256 gridpoints in each direction. The initial 
amplitude of the t = 3 perturbation is again 0.1%. The vorticity plots are shown 
on figure 5. As the initial disturbance is weak, the linear stage is long (8z), as in 
the contour surgery simulation. In the nonlinear evolution, filaments are produced 
as the remnants of the initial external annulus and wrap around the satellites, a 
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FIGURE 5. Nonlinear evolution of a slightly perturbed three-contour Rankine vortex 
(a = 0.81,/3 = 0.40,Tt = O,/ = 3) in a pseudospectral code with N, = N y  = 256, v = lo-'; 
times shown are t = 0,3.6,4.4,5.2,6,7.2,11.5,15~. 

phenomenon already observed in tripole formation. The small orbiting fragments are 
progressively erased by the hyperviscosity and the whole structure finally stabilizes 
with three semicircular satellites. All these processes are identical to those observed 
in contour surgery, though with unequal timescales due to a different dissipation 
mechanism. This quadrupole is also strikingly similar to that formed by adding a 
strong mode t = 3 perturbation on a two-contour Rankine monopole (figure 4 of 
Carton 1992). 

This pseudo-spectral simulation is first analysed in terms of integral quantities : 
circulation, angular momentum, energy, enstrophy ; their time series are presented 
on figure 6. The circulation is well preserved; its total variation is shown on 
figure 6(a). The relative changes in angular momentum and energy are minor 
(respectively 2 x lov4 and 2.7 x low3). We consider that these three quantities are 
globally conserved. Enstrophy decreases by 10.7%. This proportion is similar to that 
found with the contour surgery simulation (R2). Though modest, it is still larger than 
the energy and angular momentum variations. Enstrophy decreases as the filaments 
ejected during the multipole formation are progressively erased by the hyperviscosity. 
Multipoles emanating from circular vortices thus appear as lower-enstrophy states 
with given integral constraints, confirming a previous hypothesis (Leith 1981). The 
physical consequences of the conservation of integral properties will be addressed in 
3 6.1. 

As a final analysis, we verify that the multipole formed on figure 5 has reached 
a nearly invariant configuration. We recall that a stationary solution of the Euler 
equation is characterized by a biunivocal relation between the vorticity and the stream- 
function in the rotating frame of reference. Therefore we determine experimentally the 
global rotation rate of the multipole, D = -0.058 (note that the point-vortex equiv- 
alent is D,, = -0.057), and on figure 7 we plot the vorticity 5 versus the corotating 
streamfunction yc = y - Dr2/2 for the final quadrupole. The scatter plot is coherent 
despite a little dispersion close to the zero-vorticity level. Thus this quadrupole is 
a stationary equilibrium solution of the Euler equation. We also remark that such 
nonlinear (i, yc)  relations have been previously observed for a tripole (Orlandi & van 

2-2 
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FIGURE 6. Time series of the integral quantities during the run shown on figure 5 :  
(a )  circulation, ( b )  angular momentum, ( c )  energy, ( d )  entrophy. 

Heijst 1992) and for a quadrupole (Carton 1992). However, no conclusion on the 
stability of this multipole can yet be inferred from the mathematical form of this 
relation. 

4. Multipolar equilibria 
4.1. Analytical developments 

In the previous section, we have shown how unstable monopolar vortices can trans- 
form into relatively long-lasting multipolar aggregates. In this section, we study 
multipoles as generic equilibria of the Euler equation ((2.1) with v = 0). At the end 
of this section we will compare these equilibria with the multipolar end-products of 
the unstable evolutions previously described. On figure l(c), we give a schematic 
representation of a quadrupole. We call rc = (1 + a)/2 the distance betweeen the 
core and the satellite centres and ra = (1 - a)/2 the satellite radius. Any number 
N of satellites could be considered, but for 7 or more of them, point-multipoles are 
not stable when the core and the satellites have opposite-sign polarity (Morikawa & 
Swenson 1971). 

Here we derive analytically the form of symmetric multipolar equilibria: we assume 
that the size of each vortex patch composing them is small compared to the distance 
separating the patches. To exhibit the shape of the steady states, we apply the 
technique described in Appendix A. The absolute velocity can be expressed by (2.2). 
In this equation we set Y k  = y for the core vortex and yk = yo for the satellites. 
Then we write that the vortex boundaries are streamlines in the corotating frame 
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FIGURE 7. Vorticity versus corotating streamfunction for the quadrupolar state of the run 
of figure 5; SZ = -0.058. 

of reference and we perform an expansion of the angular velocity R and of the 
boundary pk(0) of the kth vortex patch in powers of the small geometrical parameters 
6, = (1 - a)/(l + a) and 6 b  = 2b/( 1 + a) (see Appendix A). We obtain 

with coo the correction to the point-multipole angular velocity Ro (see Appendix A). 
Now the core boundary is defined by 

~b = b [l + ko Sf (cos(NB - l)] (44 

and the satellites are bounded by 

P a  = ra [1+ k l 6 :  sin2(0) + k2 6: sin2(B) cos(0) + 6; ( p  + v cos2(B)) sin2(0)]. (4.3) 

All constants ko, k l ,  k2, p, v are given in Appendix A. 
The rotation rate is not essentially altered by finite-area effects. The core boundary 

presents N maxima directed between the satellites ; these latter resemble orthoradial 
ellipses at first order. Obviously we cannot infer any limitation on the existence of 
equilibria from these asymptotic formulae. Still they give satisfactory results even for 
finite S b  and 6, as we will see in the following subsection and they have the advantage 
of generality compared to a case-by-case numerical study. 
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4.2. Numerical results 

Multipolar equilibria are numerically obtained by means of a relaxation algorithm 
designed by Wu, Overman & Zabusky (1984). This technique has already been used 
to exhibit tripolar steady states (Polvani & Carton 1990). It is based on (2.2); it 
relaxes the boundary to render the velocity tangential at each node and achieves 
second-order precision in the positions of the nodes on each vortex boundary and for 
the global rotation rate 52. We initialize this routine with N + 1 small circular vortices 
for the first step (with given a and b). The following iterations (when we increase b 
or decrease a) start from the previous equilibrium contours, scaled by the bnew/bold 
(or (1 - anew/l  - sold) ratio. The total circulation is kept zero, so that the vorticity y 
of the core is readjusted at each step (yo = 1 for the satellites). 

On figure 8 we show some numerical equilibria for N = 3, 4 and 5 and T t  = 0. 
Tripoles (N = 2) have been presented in a previous work and are not detailed here 
(Polvani & Carton 1990). Contrary to what is sometimes observed for T t  # 0, the 
core vortex is not extremely deformed; indeed, its vorticity balances the shear exerted 
by the satellites as the total circulation is null. More specifically the core boundary 
does not exhibit cusps between the satellites: it would require very small steps in a or 
b to attain limiting states with cusps. As for satellites, they are smaller in the more 
complex multipoles. This could be explained by the necessity to avoid merger of the 
like-signed satellites which are then more closely located. Unfortunately this simple 
argument does not take into account the shear exerted by the core vortex and proves 
inaccurate quantitatively. The physical explanation lies in the geometrical structure 
of a stationary state: for the vorticity distribution to be invariant, it must lie between 
the separatrices of the corotating streamfunction yc (see figure Id). These separatrices 
join at the saddle points xh, Yh of yc, which are as many as the number N of satellites. 
Moreover, with more satellites, the core vortex circulation is more intense and brings 
the separatrices closer to one another. Therefore, the area between separatrices (thus 
bounded by wc = W c ( x h ,  Yh)) is increasingly smaller with larger N (see figure Id for 
the comparison of the area bounded by (Xhl, Yhl) and ( X h Z ,  YhZ), which is larger in 
a quadrupole than in an hexapole). Consequently we will not investigate in detail 
hereafter multipoles with more than five satellites, nor structures with very small and 
distant cores and peripheral vortices. Such aggregates have little chance to form in a 
turbulent fluid where vortices mutually interact by a weak strain. 

On table 1 we compare the analytical and numerical steady states. We compute 
the relative differences between the analytical and the numerical results for several 
geometrical and physical quantities : the core and satellite areas, the angular velocity 
of the multipole, the amplitudes of the mode-N deviation of the core boundary and 
of mode 2 on the satellite boundaries. The first row of figures is given as a reference; 
it corresponds to small core and satellites. In this case, all relative errors remain 
bounded by approximately 1 %. All other diagnostics correspond to the steady states 
shown on figure 8. They remain satisfactory even for large cores, but for the amplitude 
of the central mode N. This is due to extremely large values of 6 (0.4-0.5) and can 
be explained as follows: for a large core area with a given circulation, the core 
vorticity is weak compared to the satellites; therefore the shear at the centre is larger 
and the mode-N deformation is more intense than that computed by a perturbation 
expansion. Still, most discrepancies are bounded by roughly 40%, a satisfactory 
figure in view of the constraining hypotheses. The analytical method is proved robust 
and more general than the numerical procedure. Using the previous results, we 
can now check that multipoles formed from unstable three-contour Rankine vortices 
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FIGURE 8. A selection of numerical multipolar steady states with N = 2,3,4(a-c); rt = 0. 
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0.90 0.1 3 1 x 10-5 2 x 10-4 1.5 10-2 
0.95 0.4 3 2 x -5 x lo-' -2.5 x lop3 
0.75 0.4 3 6 x 9 x 9 x 10-2 
0.55 0.4 3 1.1  x lo-' 2.0 x lo-' 3.5 x lo-' 

0.80 0.5 4 3 x lop2 6 x 8 x lop2 
0.65 0.5 4 8 x lop2 1.1 x lo-' 2.8 x lo-' 
0.95 0.5 5 4 x lop3 2 x 6 x 
0.80 0.5 5 8 x lop3 1.6 x 1.2 x lo-' 
0.70 0.5 5 7 x lo-' 1.4 x lo-' 3.2 x lo-' 

0.95 0.5 4 2 x 10-2 - 4 ~  10-5 - 4  x 10-4 

1 x 10-2 
2.7 x lo-' 
3.9 x lo-' 

5 x lo-' 
2.8 x lo-' 
3.8 x lo-' 
4.9 x lo-' 

0.17 
2.2 x lo-' 
1.8 x lo-' 

1.4 x lop2 

7.5 x 10-2 
3.6 x lo-' 
- 1 x 10-2 

6 x lo-* 
2.7 x lo-' 

1.2 x lo-' 
3.5 x 10-1 

-1.4 x 

- 2 x 10-3 

TABLE 1. Comparative diagnostics of numerical steady states of figure 8 with their analytical 
counterparts: areas, angular velocity, modal amplitudes of contour deformation. 

are relatively invariant structures. We consider the quadrupole obtained after the 
adjustment in run (R2) (with p = 0.20) and average it in a reference frame rotating 
with the vortex. This quadrupole is relatively invariant but for a slight satellite 
wiggling and deformation. The horizontal scale of the quadrupole is 1.12 times that 
of the original vortex; it shows that the peripheral vorticity moves outwards while 
compacting into satellites. This is due to the conservation of angular momentum. 
After normalization of the outer radius to unity, we get b = 0.343,a = 0.584. On 
figure 9, we compare this multipolar end-product to the numerical equilibrium, with 
the same geometrical parameters. The similarity is reasonable but for a moderate 
shift in one of the satellite centres; the asymmetric modes have therefore not yet been 
completely damped by the weak surgery effect in run (R2). We can conclude that the 
instability of three-contour Rankine vortices produces multipoles similar to steady 
states. 

5. The stability of multipolar steady states 
We now have to determine which, if any, of these steady states are stable as well as 

the results of possible decay. We will first determine the linear stability of multipolar 
vortices. We will then run nonlinear simulations with the multipolar equilibria as 
initial conditions. Finally we will perturb these multipoles either initially or with a 
permanent strain field. 

5.1. Linear stability 
According to Morikawa & Swenson (1971), seven (or more) point vortices always 
form an unstable configuration around a core vortex of opposite polarity. Now if 
the total circulation is assumed null, then (with Morikawa & Swenson's notation) 
the satellite circulation ro = 1, the core circulation r = -N and only tripoles and 
quadrupoles can meet the stability condition. 

Here we compute the stability of a multipole composed of a central circular 
vortex and point satellites. Each satellite can undergo a radial or azimuthal motion of 
exponentially growing amplitude and the core vortex boundary is deformed by a wave 
with wavenumber p and a similar time-dependence. Then the dynamical equation (2.1) 
is linearized and the velocity formula (2.2) is computed with all contributions (core 
and satellite vortices). After some rather tedious algebra, three coupled equations are 
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FIGURE 9. A comparison of the multipole produced by the instability of the circular vortices of 
figure 3 ( - - - - ) with the equilibria corresponding to the same parameters (-). 

obtained, each one linear in o,, the growth rate of azimuthal mode-p perturbation. 
One equation corresponds to the radial displacement of the satellites, one to their 
azimuthal motion, the last one to the deformation of the core. Successive eliminations 
finally yield a third-order equation in cP for the instability of the whole multipole: 

0; - CO,.~' + (A$, + 2KP)0, - CO,A,B, - K,!2 = 0, (5 .1)  

with !2 the rotation rate and 

up = ( y  - 2~ + rO/nr,2)p/2 + y /2 ,  

A, = To(N - 1 + ( N  - p - l)(p - 1))/(4nr:), 
2 B, = --?a, + T o ( 1  - N + ( N  - p - l ) ( p  - l ) ) / ( h ; ) ,  

K ,  = ToNp6,2P/(87~~,2), 

where y = r / n b 2  is the core vorticity, b is the radius of the core, rc is the distance of 
the satellites from the centre and c&, = b / r ,  (for more details, see a similar derivation 
by Acton & Dhanak 1993). It can be shown that the deformation of the core vortex 
corresponds to the steady state previously computed. Considering the initial vortex 
as circular is thus equivalent to neglecting O ( B f )  terms. This third-degree equation 
must have three real roots for stability. In fact, its solution is not qualitatively 
different for point-multipoles and for these desingularized vortices. When K ,  = 0 the 
point-multipoles result is restored and the equation becomes 

(0, - w,)(0,' + A,B,) = 0. 

In that case we get the stability criterion for point multipoles APBP < 0, which leads 
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to T / T o  >, - ( N  - 1 - ( N  - p - l ) ( p  - 1)) /4 .  It has also been checked that when 
T = 0 the original results by Thomson (1883) are found. 

Some rapid algebra on these formulae shows that N-poles are mostly unstable on 
wavenumber p = E ( N / 2 ) ,  where E ( x )  is the integer part of x. Multipoles with an even 
number of satellites should thus degenerate into twice as simple multipoles, while 
‘odd-” multipoles should undergo an asymmetric decay. Still, this simple formula 
does not take finite-area effects into account, which play an essential role in merger 
or dipolar breaking. A complete analysis of the linear stability of the multipolar 
equilibria has been undertaken, but as of now, its results do not fit the nonlinear 
numerical simulations and will not be shown here. 

5.2. Nonlinear evolution of multipolar equilibria 

We now consider the nonlinear evolution of the previous multipolar steady states. 
As a first test of stability, we initialize the contour surgery code with the multipolar 
equilibria previously obtained. These multipoles are unperturbed and evolve in free- 
decay. We set p = 0.12 to avoid excessive dissipative effects, except when specified. 
On table 2, we present the results of the nonlinear simulations for 30 multipoles with 
zero total circulation; approximately 60 more cases with finite circulation have been 
studied which did not show qualitative differences and are not detailed here (Morel 
& Carton 1991). We also refer the reader to the previous study on tripoles (Polvani 
& Carton 1990) for supplementary material. 

Table 2 clearly shows that most tripolar and quadrupolar equilibria are stable 
( N  = 2,3). Such a stable quadrupole evolution is presented on figure 10(a), where 
a = 0.55,b = 0.40,Tt = 0. It confirms Morikawa & Swenson’s stability prediction 
for point-tripoles and point-quadrupoles. It is also consistent with the dominant 
instability of wavenumber p = E(N/2 ) .  indeed, mode p = 1 perturbations are 
relatively stable on barotropic vortices; they are manifested by a translation of the 
multipole or by its destruction as the core vortex pairs with one of the satellites, 
though usually only under a rather intense forcing. The asymmetric mode p = 1 is 
far less unstable than the elliptical mode p = 2 which appears on multipoles with 
N 2 4. 

Elliptical deformations either lead to the formation of a tripole or to dipolar 
breaking. The p = 2 mode will appear predominantly on multipoles with N = 4 or 
N = 5 .  If N = 4, the result will be a symmetric tripole or two dipoles. If N = 5, the 
final state will be strongly asymmetric. Tripoles form by (successive) satellite mergers 
when the core is sufficiently small and strong to resist the shear exerted by the 
satellites. Conversely, on a core with a larger area, hence with a smaller vorticity, this 
shear induces a large elliptical deformation resulting in dipolar breaking. A similar 
result, though still with relative numerical accuracy, is obtained with the conservation 
of integral quantities (see 0 6.2). 

On figure 10(b), we present the tripole formation from an unstable pentapole with a 
small core (a  = 0.7, b = 0.3, T r  = 0), and on figure lO(c) the dipolar breaking of a more 
extended pentapole (a  = 0.65, b = 0.5, T t  = 0). When satellites merge, filamentation is 
observed as usual in symmetric vortex merger. The expulsion of filaments from the 
core is observed more rarely, when wavenumbers p = 2 and p = 3 are simultaneously 
present. This occurs during the decay of the hexapole a = 0.7, b = 0.4, T t  = 0. 

Finally, no axisymmetrization process occurred for the zero-circulation multipoles, 
such as that observed for the a = 0.3, b = 0.2, y = -4 tripole (Polvani & Carton 1990). 
This is explained by the absence of multipolar steady states with satellites sufficiently 
large and close to merge: as the total circulation is null, the strain induced by the 
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Nsv 

2 
2 
2 
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3 
3 
3 
3 
3 
3 
3 
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4 
4 
4 
4 
4 
4 
4 
4 
4 

5 
5 
5 
5 
5 
5 

b a  Nonlinear evolution 

0.15 0.60 stable tripole 
0.20 0.80 stable tripole 
0.20 0.45 asym. breaking; 1 monopole & 1 dipole 
0.25 0.60 stable tripole 

0.20 0.55 stable quadrupole 
0.20 0.80 stable quadrupole 
0.25 0.75 stable quadrupole 
0.30 0.55 stable quadrupole 
0.35 0.55 stable quadrupole 
0.40 0.80 slightly unstable quadrupole 
0.40 0.55 stable quadrupole 
0.45 0.80 stable quadrupole 

0.15 0.80 stable pentapole(?) 
0.20 0.65 satellite merger; tripole 
0.20 0.70 satellite merger; tripole 
0.25 0.70 satellite merger; tripole 
0.30 0.70 satellite merger; tripole 
0.40 0.70 core breaking; 2 dipoles 
0.45 0.75 core breaking; 2 dipoles 
0.50 0.65 core breaking; 2 dipoles 
0.50 0.80 core breaking; 2 dipoles 

0.20 0.70 satellite merger; asym. tripole 
0.30 0.70 satellite merger; asym. tripole 
0.40 0.70 satellite merger; asym. tripole 
0.50 0.70 satellite merger; asym. quadrupole 
0.55 0.80 asym. breaking 
0.60 0.80 core breaking; dipoles 

TABLE 2. Nonlinear evolution of a selection of 30 multipoles as observed in 
the contour surgery code. 

core on the periphery is bounded. On the other hand axisymmetrization has been 
observed for multipoles with strong cores and T t  # 0. 

To test further the stability of quadrupoles, we perform several simulations where 
the multipole is either initially or permanently disturbed. First, we subject the vortex 
to a stationary large-scale deformation field of the form 

U = q x - 5 2 y y , V = Q x - q y ,  

where 52 is the background rotation and q the background strain field. A pure 
shear corresponds to A = 52 = -q. To test the quadrupole stability, we select two 
geometrical cases, one with large core and satellites (a  = 0.55, b = 0.40, Tt = 0), the 
other with smaller and more distant satellites (a  = 0.80, b = 0.45, Tt = 0). The first 
case was extensively analysed and the results are presented in table 3 .  The second 
case showed a similar resistance, though on fewer tests. 

On figure 11, we present the resistance of the quadrupole a = 0.55, b = 0.40, Tt  = 0 
to a permanent shear A = 52 = -q. Table 3 states that A = 0.09 corresponds to 
the stability limit below which the vortex remains quasi-invariant and beyond which 
the quadrupole breaks asymmetrically. On figure ll(a), A = 0.05 and a mode p = 1 
wave travels around the core boundary, eventually resulting in a cusp and a filament 
formation; on figure ll(b), A = 0.10 generates a larger displacement of the core 
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FIGURE 10. (a )  Contour surgery evolution of a stable quadrupole a = 0.55, b = 0.40, Tt = 0 (unper- 
turbed). Times shown are t = 0,6,12,18,24r. ( b )  Contour surgery evolution of an unstable pentapole 
a = 0.7, b = 0.3, rt = 0 (unperturbed), satellite merger leading to tripole formation. Times shown are 
t = 0,33,36,39,452. (c) Contour surgery evolution of an unstable pentapole a = 0.65, b = 0.5, rl = 0 
(unperturbed), core breaking forming dipoles. Times shown are t = 0,15,18,20,222 (box scale 
twofold). 

towards one satellite inducing a strong deformation of the latter. This configuration 
rapidly becomes irreversibly asymmetric as two satellites are advected closer to each 
other until they merge. Simultaneously, the core vortex becomes elliptical and forms a 
transient tripole with the two remaining satellites. Finally, the asymmetric instability 
of the tripole prevails and the system ends as a monopole and a dipole. 

For pure strain forcing, the stability limit is slightly higher, between q = 0.12 
and q = 0.135. Beyond this limit, a mode-2 instability is generated by the large-scale 
strain field and the end-products of the instability are dipoles formed by core breaking. 
These results are reminiscent of the stability of the Kida ellipse. We may wonder if 
large-scale fields with a different symmetry would act similarly on multipoles. Indeed, 
in the far-field interaction of two vortices, all azimuthal components of deformation 
are present. We thus consider the case of a strain field with 3-fold symmetry acting 
on the quadrupole of table 3 :  

U = 3 q ( y 2  - x 2 ) ,  I/ = 6 q x y .  

The stability of the quadrupole in this field is much weaker than for elliptical 
deformations as it breaks for strain amplitudes smaller than 1% of the vorticity. In 
the distant interaction of a vortex with a multipole, this latter may thus be destroyed 
by the weaker mode-3 component of the induced strain before it is affected by the 
elliptical deformation. 

Finally we test the robustness of quadrupole a = 0.55,b = 0.40,Tt = 0 when 
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Shear field, A = s2 = -q 

stable quadrupole 

breaking into a dipole and a monopole 

A = 0.05, invariant quadrupole 
A = 0.05 to 0.08, 
A = 0.09, stability limit 
A = 0.10, 

Strain field, q 

q = 0.05 quadrupole invariance 
q = 0.07,0.08, slight filamentation 
q = 0.09 to 0.12, 
q = 0.135 to 0.15, 

strong oscillations of core centroid 
core breaking forming 2 dipoles 

Initial displacement dx of core centroid (e  = dx/(a - b))  

dx = 0.025;~ = 0.167 
dx = 0.03; E = 0.20, 
dx = 0.04; E = 0.267, 
dx = 0.05; E = 0.333, 

stable quadrupole, northward displacement 
strong deformation and northward displacement 
breaking into a monopole and a dipole 
breaking into 2 asym. dipoles 

White noise displacement of contour nodes 

5 = 0.01, 
5 = 0.025, 
5 = 0.05, 

stable quadrupole (p = 0.12) 
stable quadrupole (p = 0.15) 
stable quadrupole (p = 0.25) 

TABLE 3. Long-term nonlinear behaviour of a stable quadrupole ( N  = 3,b = 0 . 4 , ~  = 0.55) under 
shear, strain, asymmetric perturbation or white noise alteration, as observed in the contour surgery 
code. 

I 

FIGURE 11. Evolution of quadrupole a = 0.55,b = 0.40,r, = 0 under moderate shear; (a )  A = -0.05 
global invariance; times shown are t = 0,8,16,24~. ( b )  A = -0.1 satellite merger and core pairing; 
times shown are t = 0,4,8,12r. 
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initially perturbed. First, we add a mode-1 deformation by shifting the core centroid 
by a distance dx towards one satellite. The relevant dimensionless parameter is 
e = dx/(a - b). For e < 0.2, the mode p = 1 deformation propagates on the core 
boundary and in the satellite locations, resulting in a northward displacement of the 
whole structure. Figure 12(a) shows this process when E = 0.167. Beyond c = 0.25, 
the whole structure becomes unstable: satellite merger and pairing with the core 
result in one dipole for c = 0.267 (figure 12b) while core breaking forms two dipoles 
for e = 0.33. 

As a second type of initial disturbance, we displace all contour nodes by an amount 
dx = 5 * rand(x),dy = 5 * ran&), where rand() is a random number generator 
bounded by 0 and 1. This white noise contains all azimuthal wavenumbers and the 
most unstable should naturally emerge. This series of tests, though run in double 
precision, is less conclusive as the surgery scale p must be augmented with 5 to avoid 
the formation of too many cusps. This increased ‘viscosity’ results in a smoothing 
of the initial disturbance, which renders the physical relevance of this numerical 
experiment questionable. 

6. Integral constraints 
From the previous observations in the numerical experiments, we now know that 

transformations from monopoles to multipoles or between multipoles produce final 
states with a slightly lower enstrophy, but similar energy, circulation and angular 
momentum, compared to the initial conditions. In order to compute analytically 
these integral constraints, we use the FAVR approximation for monopoles and 
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multipoles and assume that each vortex area and that the total angular momentum 
are conserved. As exact energy conservation is not simple to derive analytically, 
we will not use it extensively here. For each transformation, we first assume that 
enstrophy is conserved (by area conservation) and then show how a slight enstrophy 
decrease modifies the integral balances and their physical implications. All detailed 
calculations of the conservation laws are given in Appendix B for a three-contour 
Rankine vortex and for a generic multipole. In $6.1, we present their physical 
consequences for the formation of a multipole from a three-contour Rankine vortex. 
In $6.2, the transformation of a multipole into an other multipole is addressed. 

6.1. Multipole formation from a three-contour Rankine vortex 

We recall that, in the transformation of a three-contour Rankine vortex into a 
multipole, there is an outward motion of the satellite vorticity. With the conservation 
of area and angular momentum, computing the initial conditions from the final 
state is a straightforward problem. Conversely, we look here for the multipole 
characteristics r,, rc and b knowing the initial monopole (with radii Al ,  A2, B )  and its 
most unstable associated mode N (see figure l c ) .  The result is obtained by inverting 
the conservation equations and by using a perturbation expansion in terms of the 
following small geometrical parameters : 

All these quantities appear when we consider the equations at first order. We can 
then write 

r, = rA(l  - $1& + aid;), 
rc = r c ( l +  a262 + a36;), 

b = B( 1 + k,d,N), 

with kl, and aj defined in Appendix B. 
The remarkable point is that the latter equations also give us an upper bound on 

Al,A2, B if a N-pole is to be found. Indeed, consider the first order for simplification 
and A2 = 1 ;  we must have rc > r, + b (note that r, + rc # 1 )  to form a N-pole from 
the original monopole. Using the first-order perturbation expansion we get 

We see that for a certain range of these parameters (Al  w B), this equation cannot be 
satisfied. In that range of parameters, this is a sufficient condition to prevent N-pole 
formation. Outside that parameter range, complex multipoles (N 2 2) can form, 
though dipolar breaking can still occur if the p = 2 mode is sufficiently unstable. 

We now examine the effect of a slight enstrophy decay. When a three-contour 
Rankine vortex breaks into a multipole, the centre is not affected, only the outer 
annulus filaments and loses area. Thus the area conservation for the annulus becomes 

A,,, = TC(A: - A:)( 1 - e), 

where e is a small positive parameter representing the loss of area. This new equation 
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FIGURE 13. Contour surgery evolution of a zero-circulation three-contour Rankine vortex with a 
t = 2, E = 0,001 disturbance and p = 0.15: (a )  a = 0.65, h = 0.6 producing dipolar breaking, times 
shown are t = 0,3,4,5~ (box length scaled by 2.0); ( b )  a = 0.65,h = 0.4 with a tripole formation, 
times shown are t = 0,3,4,62 (box length scaled by 1.25). 

yields at first order the following upper bound on B if a multipole is to be formed: 

Thus the effect of an enstrophy decrease (here via filamentation) is to favour multipole 
creation (Bhm > BI,, with enstrophy conservation). For instance, for A = 0.65,N = 
2, f = 0.1 we obtain Brim = 0.37. Numerical experiments show that with B = 0.6 the 
vortex slowly breaks into two dipoles (see figure 13u), while with B = 0.4 the core 
resists and a tripole is finally formed (see figure 136). Our formula is thus slightly 
overevaluated, but it shows that the core and periphery of the original monopole 
have to be relatively distant to create multipoles. 

6.2. Mult iple  degeneracy 
As previously, we use the conservation of core and satellite areas and total momentum 
to forecast the result of a multipole instability. Contrary to $6.1, a zeroth-order 
approximation suffices here (the first-order correction makes only a few percent 
difference). The conservation laws are written 

62 = 61, Nlri, = N ~ Y ; ~ ,  N1r:,rzl = N&rz2 

if subscript 1 denotes the initial multipole and 2 the final state with fewer satellites. 
Thus the condition rc2 2 ra2+b2 gives the following constraint on the initial multipole: 

61 < $[I +a1 - ( ~ 1 / ~ 2 ) 4 ( 1  -a l l ] .  

If this condition is satisfied, we can obtain a new multipole; otherwise the core breaks 
and forms dipoles. Again the condition is sufficient for dipole formation, but not for 
multipole creation. An example given on table 2 for N I  = 4, N2 = 2, a1 = 0.70 gives 
blim = 0.60. We observe dipolar breaking for 61 = 0.40. This might be due to a further 
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One-contour 
Rankine vortices 

(Rkl, SE) 

Rankine vortices \ 

Three-contour 

Dipoles + Asymmetric instability 4 one Rk2 
(Dp, SE) + Off-centre collisions + one Tp 

Tripoles + Asymmetric breaking -+ one Dp, one Rkl 
+ Symmetric breaking -+ two Dp 

SE) + Axisymmetrization + one Rk2 

+ Core breaking +two Dp 
Quadrupoles + Core pairing + one Dp, one Rkl 

(Qp, SE) + Satellite merger + one Tp 
+ Axisymmetrization + one Rk2 

+ Core breaking +two Dp 
+ Satellite merger + one Tp 

‘’1 + Satellite merger + one QP 

T )  . Pentapoles Rankine vortices 
(Rk3, SE) 

Hexapoles + Asymmetric breaking + one Dp, one Rkl 

\ 
(Hp) + Satellite merger + one Tp 

FIGURE 14. Synthetic diagram of the various vortex forms and of their respective transformations: 
solid thick arrows show a transition between vortex species with slight initial perturbation, while 
for dashed arrows, a strong initial disturbance is necessary for the transition to occur. 

instability of a transient tripole on mode p = 2, or to a strong loss of enstrophy in 
filaments. We hope that a more complete analysis taking the energy conservation into 
account will help solve this discrepancy. 

7. Summary and final conclusions 
In this paper, we have addressed the question of the formation, existence and 

decay of isolated, piecewise-constant multipolar vortices. Circular step-like vortices 
with zero circulation easily transform into multipoles with fewer than six satellites 
by barotropic instability. This transition is favoured when the initial vorticity profile 
contains two separate active regions. The multipoles thus formed closely resemble the 
multipolar equilibria obtained by perturbation expansions around a circular shape, 
or via numerical relaxation procedures. On figure 14, we present the results of all 
nonlinear simulations performed with Rankine vortices and zero- or finite-circulation 
multipoles. The existence of stable equilibria for a vortex type is indicated by the 
symbol (SE). The stability analysis reveals that tripoles and quadrupoles are stable 
features of the multipolar vortex family, both naturally and when initially or perma- 
nently deformed. More complex multipoles decay into dipoles, tripoles (and seldom 
quadrupoles) by growth of elliptical (or triangular) deformations. Axisymmetric vor- 
tices can be end-products of these transformations, either after asymmetric breaking 
or after axisymmetrization (observed only for finite-circulation multipoles). The most 
frequent decay mechanisms are successive satellite merger, core breaking with dipole 
formation and core pairing with one satellite. 

These evolutions are explained by the dominant instability of mode p = E ( N / 2 )  
for N + 1 point vortices. Thus the end-products of the evolutions will depend on the 
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initial parity of N (see table 4). If mode p = 1 is unstable, asymmetric instability will 
be manifested by a translation of the multipole or by core pairing with one satellite, 
while if mode p = 2 dominates, elliptical deformations will grow on multipoles. In 
fact, finite-area effects play a role as mode p = 2 finally leads to tripoles via merger or 
to dipoles via breaking. These finite-area effects can result in a dominance of dipoles 
or tripoles as final states instead of more complex multipoles. Finally, it appears that 
the conservation of integral quantities can help predict the final fate of an unstable 
vortex, though still more easily for a three-contour Rankine than for a multipole. 

During the completion of this manuscript, a similar study by Carnevale & Kloost- 
erziel (1994) was brought to our attention. This paper focuses on the instability of 
continuous shielded vortices, with two adjacent active regions and very steep vorticity 
gradients. It is of great interest to note that, starting from different conditions, our 
two studies converge to the same conclusion, viz. that quadrupoles are robust vortex 
structures. In their study, the numerical results are confirmed by laboratory experi- 
ments. At the same time, a study of tornadoes by Lin (1992) was mentioned to us 
by the two same authors. This contribution also shows the formation of multipolar 
vortices from initially circular vortices. It appears therefore that a multi-contour for- 
mulation is an appropriate method to describe the physics while keeping the number 
of parameters under control. Moreover, we have shown here that various techniques, 
such as analytical developments or numerical iterative schemes, contour surgery or 
pseudospectral codes, yield similar solutions with satisfactory accuracy. 

Much work remains for multipole dynamics : relating the nonlinear ( c ,  yc) relation 
to stability and to minimum-enstrophy properties (as yet no analytical solution using 
perturbation expansions has been successful), obtaining a better numerical precision 
for the stability of multipolar steady states, using energy invariance to predict the 
decay of a multipole and relating dipole formation to successive instabilities of 
multipoles. We have provided here only a first glimpse of the problem. It is also 
of great importance to show the relevance of such work to geophysical flows. In 
particular, the effects of stratification on multipole dynamics are striking: the final 
states are oscillatory rather than steady and are dominated by cyclic potential energy 
exchanges (e.g. Carton & McWilliams 1989). A recent observation of baroclinic 
tripoles in the Bay of Biscay (by satellite I.R. imagery and in-situ data) confirms the 
model results (figure 2 of Pingree & Le Cann 1992). Using these oceanic parameters in 
a primitive equation model, they later showed that dipolar, tripolar and quadrupolar 
deformations alternate in the vortex shape. Transient tripolar forms have also been 
observed on a vortex drifting under the fi-effect (Hesthaven et aE. 1992). Finally, the 
presence of an isolated seamount has been shown to stabilize some multipoles in two- 
dimensional flows (Mied, Kirwan & Lindemann 1992; Carton & Legras 1994). When 
sufficient data on oceanic vortices are made available (e.g. by satellite observation), it 
would be of great interest to look for evidence of multipolar equilibria, especially in 
the vicinity of irregular coastlines. 

G .  Morel and X .  J .  Carton 
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Appendix A. Multipolar equilibria 
To derive the equation determining the stationary state in a rotating frame, we 

require that its contours must also be streaklines, viz. if f ( r ,  8, t) = fi is the equation 
of the jth contour in the rotating frame, f must keep the same value all along the 
evolution : 

or 
af - af f ieaf  
- + 24,- + -- =o, 
at ar r 38 

where 
using (2.2). 

= ii - h x i. is the velocity in the rotating frame; ii and b are calculated 

For a stationary state we have f ( r ,  8, t )  = f ( r ,  8) = r - g(8) = 0 which leads to 

As ii and 52 are calculated with (2.2), they also depend on the contours. This equation 
is too complicated to be solved in general and we can only get some approximation 
for g (= pk hereafter, where k is the vortex index inside the multipole) and 52 using 
a small-parameter expansion. These parameters are the ratios of the vortex radii to 
their distance, &, and 6,. We write 

52 = 0 0  + 6 k  01 + 8; 522..., (A 2) 

(A 3) P k ( 8 )  = PkO + 8 k  Pkl fl(8) + 6; P k 2 f 2 ( 8 ) - -  

with 8 the local angle in the kth vortex frame of reference. To obtain the explicit 
values of the coefficients and of the form of the functions in the expansion (A2) and 
(A3), we use a generic technique that we detail hereafter for the core vortex. 

Let us assume that 

PO = b + Eh( O ) ,  (A 4) 
with h(0) = 0 because pO(0) = b, where h and E are to be determined. Equation (A 1) 

yields 

ur and u8 are calculated with (2.2) at a sufficient order for each contour. 
Now, ii = ii,, + h,, where su and cu are the satellites and core vortices contributions 

respectively. For the su term, (A5) shows that the basic state (circular vortices) is 
sufficient. We get: uesv = iyo6,22b which will be neglected hereafter with respect to 
the cv term. 52 is calculated when determining the shape of the satellites and is the 
rotation rate of the equivalent point-vortices structure (see Morikawa & Swenson) 
with appropriate strength. It proves to be a second-order term and is thus negligible 
too. We also calculate 

N-1 
YOra ra  u l S v = - - -  (t) NsinN8. 

2 rc  
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For the cv term, (2.2) yields 

i i c c ( p o ( o y r )  = -- iog[p;(6') + p ; ( q  - 2 p 0 ( e / ) p 0 ( 0 )  cos(o/- 0)1 
471 

x(aspo(~)zr + po(6)&) do . 
lr 

For uec, the basic state is sufficient and we obtain usca = iyb.  When calculating urcU, 
the first-order perturbation of the boundary must be retained: 

47T yb  l uTcv(6') = ---E log(1- cos(8' - 6))(a,h(6)~0~(0' - 0) + h(B)sin(6' - 0))dQ. 

To calculate uTCu: we use the integrals 

2.n 
I, = [ log( 1 - cos 6) cosp6d0 = --. 

P 
This yields the following equation for h: 

- 2  EoOh = -(-~yor,6,6f- 'N sin NO + uFCu). 
Y 

Assuming h(6) = .Zap sinp6 + &,(cospO - 1) and solving shows that 

h(tl) = a ( c o s ~ e  - 1) 

and 

We then get 
ur,.,> = --fay& sin NO. 

and 
& = d b .  N 

Using this procedure we list below the various coefficients in the perturbation 
expansions (4),(7),(  8). The correction to the point-multipole angular velocity is 

kl(N - 1)/2 - 26(N;  2,3) ko 6~ '1 (yb /yora )  
( ~ b ~ / ~ o r , 2 )  + ( N  - 1)/2 

coo = ? 

where 6(N;2,3) = 1 if N = 2 or N = 3 and 6 ( N ; 2 , 3 )  = 0 otherwise. The various 
constants are 

k o 8yb2 + ~ 
v = 2/3(N - 1 + 30 - C) - 7k: /6  - 

3 3yor;' 
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The sums CJ and C are 
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cos(k(2n/N)) 
N-1 

= ( N  - 1)(N - 5)/6, 
CJ = c 1 - cos(k(27c/N)) 

k = l  

cos(k(2n/N)) N-1 

C = C  = ( N 2  - 1)(N2 - 19)/180, 
k = l  [l - cos(k(2n/N))]2 

comparable to Dritschel's (1985) results. 

Appendix B. Integral constraints 

vortex and for the multipoles. 
Here we derive the explicit forms of the angular momentum and area for a circular 

B.l. Energy conservation 
As our model is barotropic, the energy is purely kinetic; an integration by parts using 
periodic boundary conditions yields the usual quantity called excess energy : 

E = 11 -(yrdrdQ. 

The energy can be computed only by assuming that [ is piecewise-constant and using 
the point-vortex form for y. This does not yield sufficient precision in the end. We 
will therefore not use this conservation law. 

B.2. Momentum conservation 
A similar integration by parts yields an excess angular momentum: 

A ,  = J' 1 r2[rdrd0. 

After a little algebra we get, for the multipole, the contribution of the core vortex: 

nyb4 
2 

llco = -( 1 - 4k,6,N) 

and of the satellites 

r,"r," 
2 

Asat = Nnyo-[2 + (2k1 + 1)s; + (,u + $ V  + k2 + 2k1)6,4]. 

For the three-contour Rankine vortex, we remember that there is an outward motion 
of the peripheral vorticity in the transformation into a multipole. We therefore 
consider a monopole of the following form: 

[ = y ,  O d r d B ;  
[ = O ,  B d r d A l ;  

i = Y O ,  A1 d r d 4; 
i = 0, r 2 4. 

We then get the following formula for the momentum: 
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B.3. Area conservation 
As vorticity is piecewise constant, vorticity and enstrophy conservation are equivalent 
to area conservation. Areas can also be easily calculated using our perturbation 
expansions (9) and (10): 

A,, = zb2 ( 1  - 2k06,N), 

Asat= N n r : ( l + k 1 6 : +  ( i p + + v + i k : ) 6 : ) .  

B.4. Results 

The radii r,, re, b of the multipole are given in the text (8 6.1) with respect to Al,A2, B. 
We expand here the expressions for aj used in the formulae. 

If N 2 3, the values of cl j  are 

r -1 
2' 

a3 = -$kz0 + i k i o  + Ak:,. 

If N = 2, the previous formulae are still correct but we must replace (yB2/yor2)klo by 

The explicit values of kl ,  k2, p, v are detailed in Appendix A. The subscript o in kl 
and k2 means that these quantities, which depend on ra and re, must be evaluated at 
r A  and rc.  

(rB2/yor$)(k1u + 2k20B2/r2). 
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